AST1.5 Universal Transverse Mercator coordinate system

Rita Cautschy, University of Basel

DaSCH
Swiss National Data and Service Center for the Humanities

Universal Transverse Mercator coordinate system

- map projection system for assigning coordinates to places on the surface of the Earth alternative to the traditional latitude and longitude method
- Earth's surface is divided into 60 vertical zones from 80° south to 84° north
- usually 6° wide
- each has a central meridian which is used as reference meridian for projection
- each has its own parameterization of the transverse Mercator projection parameters vary by nation or even region

Wikimedia Commons, Public domain

UTM coordinate system

- combination of zone and latitude band defines grid zone
- UTM projection associated with the zone applied to arrive at coordinates
- projected equator then forms the X-axis, and the central meridian the Y -axis

Universal Transverse Mercator coordinate system

- X and Y values are given in metres
- X-value
- X-value of the central meridian is set to 500'000 metres
- X-value multiplied by the zone scale factor is the first coordinate - distance in metres to the east, referred to as the easting

Universal Transverse Mercator coordinate system

- Y-value
- Southern hemisphere: equator is set by definition to $10^{\prime} 000$ '000 m
- Northern hemisphere: equator is set by definition to 0 m
- second coordinate is Y-value multiplied by the scale factor -distance in metres to the north, referred to as the northing
- important to specify corresponding zone number, otherwise coordinate is ambiguous
- Roman village Augusta Raurica (CH): 32T easting (X) 403767 northing (Y) 5265285

$$
\text { WGS84: } \phi=47.533860^{\circ}, \lambda=7.721402^{\circ}
$$

Universal Transverse Mercator coordinate system

- conversion between UTM and WGS84 coordinates

1. use online converter

- https://coordinates-converter.com/en
- http://rcn.montana.edu/resources/Converter.aspx

2. use available software packages

- https://search.r-project.org/CRAN/refmans/oce/html/utm2lonlat.html

3. do it yourself

- \quad see formulae in downloadable slides or use our downloadable spreadsheet

Credits

Author

- Rita Gautschy, University of Basel (2023)

Concept SEACTeach

- Rita Gautschy, Stanisław Iwaniszewski, Alejandro Martín López, Frank Prendergast (2021)

Design

- Front and banner image: Gaia's Milky Way, © ESA, Gaia, DPAC
- Presentation template based on Isabella by SlidesCarnival

Conversion between UTM and WSG84 coordinate system

Source of equations: Bill Hazelton, https://www.quora.com/How-do-I-convert-UTM-into-longitude-and-latitude-without-using-software

1. constants

$$
\begin{aligned}
& a=6^{\prime} 378^{\prime} 137 \mathrm{~m} \\
& e^{2}=0.0066943800 \\
& k_{0}=0.9996 \\
& \pi=3.1415926
\end{aligned}
$$

semi-major axis of WGS84 ellipsoid
eccentricity of WGS84 ellipsoid
central scale factor for UTM
ratio of a circle's circumference to its diameter

Conversion between UTM and WSG84 coordinate system

2. remove offsets

UTM coordinates: zone number, band, easting (E), northing (N)
$E^{\prime}=E-500$ '000 m
$N^{\prime}=N$ (in the northern hemisphere)
$N^{\prime}=N-10^{\prime} 000$ '000 m (in the southern hemisphere)

Conversion between UTM and WSG84 coordinate system

3. calculate approximate latitude, the foot-point latitude ϕ^{\prime}
```
intermediate steps:
b = a * sqrt (1 - e}\mp@subsup{e}{}{2
n=(a-b)/(a + b)
G=a*(1-n)*(1-n2)*(1+9/4*n' 225/64*n4)*(m/180)
```

G
mean length of an arc of one degree of the meridian

Conversion between UTM and WSG84 coordinate system

3. calculate approximate latitude, the foot-point latitude ϕ^{\prime}

$$
\begin{aligned}
& m=N^{\prime} / k_{0} \\
& \sigma=(m * \pi) /(180 * G) \\
& \phi^{\prime}=\sigma+\left(3 n / 2-27 n^{3} / 32\right) * \sin 2 \sigma+\left(21 n^{2} / 16-55 n^{4} / 32\right) * \sin 4 \sigma+\left(151 n^{3} / 96\right) * \sin 6 \sigma+ \\
& +\left(1097 n^{4} / 512\right) * \sin 8 \sigma
\end{aligned}
$$

Conversion between UTM and WSG84 coordinate system
4. calculate geographical latitude ϕ

$$
\begin{aligned}
& v^{\prime}=a / \operatorname{sqrt}\left(1-e^{2} \sin ^{2} \phi^{\prime}\right) \\
& \rho^{\prime}=\left(a *\left(1-e^{2}\right)\right) /\left(1-e^{2} \sin ^{2} \phi^{\prime}\right) 3 / 2 \\
& \psi^{\prime}=v^{\prime} / \rho^{\prime} \\
& t^{\prime}=\tan \phi^{\prime} \\
& x=E^{\prime} /\left(k_{0} * v^{\prime}\right)
\end{aligned}
$$

Conversion between UTM and WSG84 coordinate system

4. calculate geographical latitude ϕ
$\phi=\phi^{\prime}-\mathrm{t}^{\prime} /\left(\mathrm{k}_{0} \rho^{\prime}\right) *\left(\mathrm{x} * \mathrm{E}^{\prime}\right) / 2$
$+t^{\prime} /\left(\mathrm{k}_{0} \rho^{\prime}\right) *\left(\mathrm{x}^{3} * \mathrm{E}^{\prime}\right) / 24 *\left[-4 \psi^{\prime 2}+9 \psi^{\prime}\left(1-\mathrm{t}^{\prime 2}\right)+12 \mathrm{t}^{\prime 2}\right]$

- $\mathrm{t}^{\prime} /\left(\mathrm{k}_{0} \rho^{\prime}\right) *\left(\mathrm{x}^{5} * \mathrm{E}^{\prime}\right) / 720 *\left[8 \psi^{\prime 4}\left(11-24 \mathrm{t}^{\prime 2}\right)-12 \psi^{\prime 3}\left(21-71 \mathrm{t}^{\prime 2}\right)\right.$
$\left.+15 \psi^{\prime 2}\left(15-98 t^{\prime 2}+15 t^{\prime} 4\right)+180 \psi^{\prime}\left(5 t^{\prime 2}-3 t^{\prime} 4\right)+360 t^{\prime} 4\right]$
$+t^{\prime} /\left(\mathrm{k}_{0} \rho^{\prime}\right) *\left(x^{7} * E^{\prime}\right) / 40320 *\left(1385+3633 t^{\prime 2}+4095 t^{\prime} 4+1575 t^{\prime} 6\right)$
$\phi=\phi *(180 / \pi)$

Conversion between UTM and WSG84 coordinate system

5. calculate the geographical longitude λ
$\mathrm{x}=\mathrm{E}^{\prime} /\left(\mathrm{k}_{\mathrm{o}} * \mathrm{v}^{\prime}\right)$
$\omega=\sec \phi^{\prime} * x-\sec \phi^{\prime} * x^{3} / 6 *\left(\psi^{\prime}+2 t^{\prime 2}\right)$

$$
\begin{aligned}
& +\sec \phi^{\prime} * x^{5} / 120 *\left[-4 \psi^{\prime 3}\left(1-6 t^{\prime 2}\right)+\psi^{\prime 2}\left(9-68 t^{\prime 2}\right)+72 \psi^{\prime} t^{\prime 2}+24 t^{\prime} 4\right] \\
& -\sec \phi^{\prime} * x^{7} / 5040\left(61+662 t^{\prime 2}+1320 t^{\prime} 4+720 t^{\prime} 6\right)
\end{aligned}
$$

$\lambda_{0}=-187+$ zone $* 6$
longitude of the central meridian of the UTM zone
$\lambda=\omega *(180 / \pi)+\lambda_{0}$

